
22 The Delphi Magazine Issue 58

ADOX Extensions
For DDL And Security
by Guy Smith-Ferrier

ADOX is an additional set of
interfaces for ADO. Its pur-

pose is straightforward: to allow
programmers to handle the cre-
ation, maintenance and security
of databases programmatically.
Traditionally, these problems have
been solved by using SQL Data
Definition Language (DDL) and SQL
Data Control Language (DCL).
Although DDL and DCL are initially
very simple languages (using
CREATE, ALTER, DROP, GRANT and
REVOKE commands) the exact
syntax used by vendors varies
more widely than that of SQL Data
Manipulation Language (SELECT,
INSERT, UPDATE, DELETE). So, whereas
ADO itself can be viewed very
broadly as a replacement for DML,
ADOX can be viewed as a
replacement for DDL and DCL.

ADOX was originally added to
Microsoft Data Access Compo-
nents (MDAC) in MDAC 2.1
(released March 1999). When Win-
dows 2000 was released in Febru-
ary 2000, MDAC 2.5 (and therefore
ADO2.5) was also released. Very
little about ADOX has changed in
ADO 2.5 and everything in this arti-
cle is relevant to both releases.

Before we get stuck into ADOX, a
warning is in order. If you are famil-
iar with ADO, you’ll be aware that
although ADO defines feature sets
and the programmer’s interface to

those feature sets, it does not
follow that any particular OLE DB
Provider supports any complete
ADO feature set. This is still true
for ADOX, but considerably more
of ADOX is left unimplemented by
most OLE DB Providers than you
might expect. Of all the OLE DB
Providers, the Jet 4.0 one (ie
Access) has the most complete
implementation and therefore that
is what I will use here.

ADOX Type Library
At the time of writing, the current
release of Delphi is 5.01 (Delphi 5
Update Pack 1) and ADOX support
is not included in ADOExpress.
However, this presents only a
small inconvenience as the ADOX
type library is easily imported. To
import the ADOX type library,
select Project | Import Type
Library and then choose the
Microsoft ADO Ext. 2.1 For DDL And
Security (Version 2.1) type
library. If you have installed ADO
2.5 then the type library is called
Microsoft ADO Ext. 2.5 For DDL And
Security (Version 2.5). If the type
library isn’t listed then click on Add
and select MSADOX.DLL. You will
need to change all of the class
names in the dialog box to prevent
clashes with existing Delphi
classes (see Table 1).

Not all these changes are neces-
sary: some are made simply for
consistency. Give the Palette Page
a suitable name, such as ADOX.
Whether you check the Generate
component wrapper checkbox or not
depends on how you want to use
ADOX in your apps. ADOX doesn’t
have any events to sur-
face, so both choices
have similar results.
Once the type library has
been imported you’ll
have an ADOX_TLB.PAS
file in your Delphi
Imports directory and be
ready to use ADOX.

ADOX Object Model
Figure 1 shows the ADOX Object
Model. In the centre of the diagram
is Catalog, which is analogous to a
database and holds collections of
tables, views, procedures, groups
and users.

Catalogs
Table 2 shows the properties of
Catalog.

The ActiveConnection property
is the ADO connection object
which is used to connect to a data
source. It is shown in brackets
because it is only available as a
property if you use the Catalog’s
dispinterface or IDispatch. If you
use the Catalog interface (which,
like any interface, offers the best
performance) you must use the
Get_ActiveConnection and Set_Act-
iveConnection methods.

So, let’s see what we can do with
a Catalog. Drop a TADOConnection
on a form, set its ConnectionString
to the Northwind.mdb Access
database (using the Jet 4 OLE DB
Provider), set LoginPrompt to False
and Connected to True. The code in
Listing 1 uses Catalog to display all
the table names in a memo.

The call to CreateCOMObject cre-
ates a new Catalog object. You
could use CreateOLEObject or the
proxy class which Delphi creates

➤ Table 1

CatalogCatalog

GroupsGroups

UsersUsers

TTableable

ColumnsColumns

KeysKeys IndexesIndexes

ProceduresProcedures

VViewsiews

➤ Figure 1

(ActiveConnection) The active Connection object

Groups Collection of Group objects

Procedures Collection of Procedure objects

Tables Collection of Table objects

Users Collection of User objects

Views Collection of View objects

➤ Table 2

Default Name Changed Name

TTable ADOXTable

TColumn ADOXColumn

TIndex ADOXIndex

TKey ADOXKey

TGroup ADOXGroup

TUser ADOXUser

TCatalog ADOXCatalog



June 2000 The Delphi Magazine 23

when it imports the type library
(CoCatalog). The code iterates
through the Catalog’s collection of
tables displaying the name of each
table in Memo1. The list includes all
tables (even system tables, but
we’ll come back to this later). Of
course you could have achieved
the same result using TADOConn-
ection.OpenSchema, but this first
step is small enough to work as a
good starting point for ADOX.

Catalog is unusual in that it has a
single method. Not because it only
has one method, but because it has
any methods at all. Apart from Col-
lections, which I will come to in a
moment, no other ADOX object has
any methods at all. The method is
called Create and is used to create
a new database. It takes a single
parameter which is a connection
string identifying the database to
be created and the OLE DB
Provider which is responsible for
creating it (see Listing 2).

There is no method in ADOX for
deleting a database. The simplest
solution is to use DeleteFile on the
database file itself.

var
Cat: Catalog;
intTable: integer;

begin
Cat:=CreateCOMObject(Class_Catalog) as Catalog;
Cat.Set_ActiveConnection(ADOConnection1.ConnectionObject);
for intTable:=0 to Cat.Tables.Count - 1 do
Memo1.Lines.Add(Cat.Tables.Item[intTable].Name);

end;

➤ Above: Listing 1 ➤ Below: Listing 2

// create an Access 2000 MDB
Cat.Create(
'Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Temp\Test.mdb');

// create an Access 97 MDB
Cat.Create(
'Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Temp\Test.mdb;'+
'Jet OLEDB:Engine Type=4');

Collections
ADOX is a mass of collections:
collections of tables, collections of
columns, collections of indexes,
etc. We’ll take a quick look at what
these collections have in common.
Collections have just two proper-
ties which most programmers will
be interested in: Count and Item.
Count returns the number of items
in the list and Item is an array
which accepts either a number
indicating the ordinal position
within the collection or the name of
the item. There is also a _NewENum
function for anyone brave enough

to make use of IENumVariant, but as
this approach is usually only of
benefit when the collection is a vol-
atile one we’ll skip it (database
structures are, by their very
nature, non-volatile).

In addition to the properties,
dynamic collections (collections
which can be added to and deleted
from) have Append, Delete and
Refresh methods. The Append
method adds a new item to the list
and the parameters are different
for each type of collection. The
Delete method accepts a number
or a name of an item to remove



24 The Delphi Magazine Issue 58

from the collection. The Refresh
method tells the collection to
refresh itself because some exter-
nal force has modified the collec-
tion without the collection’s
knowledge (typically this will be
some dynamic SQL statement).

Tables
ADOX’s Table describes a table in
its entirety. Its properties are
shown in Table 3.

Before I get too far into the Table
itself I want to take a look at the
Properties property as it is
common to Table, Column, Index,
Group and View. The Properties
property contains what are called
‘dynamic properties’. In essence
Properties is a cargo slot where all
the information which an OLE DB
Provider needs beyond the basic
ADOX object is placed. For exam-
ple, Oracle has requirements
which Access does not and vice
versa. Rather than create a huge
class which covers every eventual-
ity, Microsoft solved the problem
by having dynamic properties.
Many of the properties truly are
‘dynamic’. By this I mean that in
one context an object supplied by
an OLE DB Provider might report
no properties at all but in a differ-
ent context (where the properties
are relevant) the same OLE DB Pro-
vider may report many properties.

The Properties property is a
collection of Property objects.
Property objects have Attributes,
Name, Type and Value properties.
The code in Listing 3 shows all the

properties of a Table object. For an
Access table the result is as shown
in Listing 4.

There are a couple of
points worth making about
the code. Notice the defini-
tion of the Prop interface.
Rather than declare it as
type Property it is declared
as ADOX.Property_ (the
underscore prevents a
clash with a Delphi class).
The ADO and ADOX type
libraries both contain a
Property object and if both
are used in the same unit a
distinction has to be made.

Secondly notice the IF
line which tests the properties’
Attributes. This is performing
bitwise arithmetic with adProp-
Write to see if it is contained in
the Attributes (and therefore the
property can be written to).
What’s interesting about this line
is that this is the way all sets are

var
Cat    : Catalog;
intProp: integer;
tbl    : Table;
Prop   : ADOX_TLB.Property_;   // use ADOX Property instead of ADO Property
strVal : string;

begin
Cat:=CreateCOMObject(Class_Catalog) as Catalog;
Cat.Set_ActiveConnection(ADOConnection1.ConnectionObject);
tbl:=Cat.Tables['Customers'];
for intProp:=0 to tbl.Properties.Count - 1 do begin
Prop:=tbl.Properties.Item[intProp];
strVal:=Prop.Value;
if (Prop.Attributes and adPropWrite) = adPropWrite then
Memo1.Lines.Add(Prop.Name+'='+strVal)

else
Memo1.Lines.Add(Prop.Name+'='+strVal+' (Read only)');

end;
end;

➤ Above: Listing 3

Temporary Table=0 (Read only)
Jet OLEDB:Table Validation Text=
Jet OLEDB:Table Validation Rule=
Jet OLEDB:Cache Link
Name/Password=0
Jet OLEDB:Remote Table Name=
Jet OLEDB:Link Provider String=
Jet OLEDB:Link Datasource=
Jet OLEDB:Exclusive Link=0
Jet OLEDB:Create Link=0
Jet OLEDB:Table Hidden In Access=0

➤ Listing 4

Attributes Is the column fixed length and/or nullable ?

DefinedSize Size of a column if the column is variable length

Name Name

NumericScale Scale of a column if the column is numeric

ParentCatalog Catalog which owns the column

Precision Precision of a column if the column is numeric

Properties Collection of Property objects

RelatedColumn Name of the column in a related table (if column is part of a Key)

SortOrder Ascending or descending sort order

Type Data type

“TABLE” (Jet, SQL Server)

“SYSTEM TABLE” (Jet, SQL Server)

“ACCESS TABLE” (Jet)

“SYSTEM VIEW” (SQL Server)

“VIEW” (SQL Server)

“GLOBAL TEMPORARY”
➤ Table 5

➤ Table 4

implemented in ADO (and COM in
general). It is unusual only because
as Delphi programmers we don’t
usually write code like this, as
Delphi has an excellent implemen-
tation of enumerated types and
sets of enumerated types. If ADOX
support gets included in Delphi 6
then the resulting class is much

for intTable := 0 to
Cat.Tables.Count - 1 do
if Cat.Tables.Item[intTable].Type_='TABLE' then
Memo1.Lines.Add(Cat.Tables.Item[intTable].Name);

➤ Below: Listing 5

Columns Collection Of Column Objects

DateCreated Date of creation

DateModified Date of last modification

Indexes Collection of Index objects

Keys Collection of Keys objects

Name Name

ParentCatalog Catalog which owns the table

Properties Collection of Property objects

Type Table type (normal, system or
temporary)

➤ Table 3



26 The Delphi Magazine Issue 58

more likely to use sets, so the same
line would be rewritten:

if axPropWrite in
Prop.Attributes then

Getting back to ADOX.Table, we can
use the Table.Type property to
ensure that the list of tables we
dumped in the memo only includes
non-system tables: see Listing 5.

The Type property is actually
Type_ to prevent a clash with
Delphi. It is compared against a
string. The string is decided by the

procedure TForm1.btnStructClick(Sender: TObject);
var
Cat: Catalog;
tbl: Table;

begin
Cat:=CreateCOMObject(Class_Catalog) as Catalog;
Cat.Set_ActiveConnection(
ADOConnection1.ConnectionObject);
tbl:=Cat.Tables['Customers'];
Memo1.Lines.Add(TableToSQLCREATETABLE(tbl));

end;
function TableToSQLCREATETABLE(tbl: Table): string;
var
intColumn: integer;
Col: Column;

begin
Result:='CREATE TABLE '+tbl.Name+' (';
for intColumn:=0 to tbl.Columns.Count - 1 do begin
Col:=tbl.Columns.Item[intColumn];
Result:=Result+Col.Name+' '+ColumnToSQLDataType(Col);
if intColumn <> tbl.Columns.Count - 1 then
Result:=Result+', ';

end;
Result:=Result+')';

end;
function ColumnToSQLDataType(C: Column): string;
begin
Result:=IntToStr(C.Type_);
// this list is only a subset of the full list
case C.Type_ of
adDate   : Result:='DATE';
adDouble, adCurrency, adSingle : Result :=
'NUMERIC('+IntToStr(C.Precision)+','+IntToStr(C.NumericScale)+')';

adInteger: Result := 'INTEGER('+IntToStr(C.Precision   )+')';
adVarChar: Result := 'VARCHAR('+IntToStr(C.DefinedSize )+')';
adWChar  : Result := 'VARCHAR('+IntToStr(C.DefinedSize )+')';

end;
end;

➤ Listing 8

➤ Above: Listing 6 ➤ Below: Listing 7

writer of the OLE DB Provider, so
there is no hard and fast list. To
give you an idea of what to expect
Table 4 has a list of known strings.

Columns
Columns are essential to a table
definition (they are also used in
ADOX.Index and ADOX.Key). Their
properties are shown in Table 5.

Care should be taken with some
properties because they are con-
text dependent. For example, the
SortOrder property is only relevant
when the Column is part of an Index.

The code in Listing 6 shows how
you could use Table and Column to

write an equivalent SQL CREATE
TABLE command to rebuild the
table. Note that this code is simply
an example of mining the Columns
property for data: the resulting
SQL statement should not be
considered complete.

Creating A Table
So far we’ve just read information
about the database and created a
new database. Now it’s time to
create a table. To create a table
you need an ADO connection. You
could use the ADO type library for
this purpose or use TADOConnection
in ADO Express. I’ll take the latter
approach. Assume a TADOConn-
ection called ADOConnection2 has
been added to the form and the
connection string has been set to
the TEST.MDB database we created
earlier. Set the LoginPrompt to False
and Connected to True. Now add a
button with the code in Listing 7.

Like all dynamic collections, the
Tables.Columns property has an
Appendmethod, but the parameters
are specific to the Columns collec-
tion. In this case the parameters
are the field name, field type and
field size. What is interesting about
this process is that it is the act of
appending the table to the Cata-
log’s list of tables which creates
the table. This is typical of ADOX,
in that ADOX is very immediate.

Altering an existing table is
simply an extension of what we
already know. The following code
deletes the PHONE field and adds a
new FAX field:

tbl.Columns.Delete(‘PHONE’);
tbl.Columns.Append(
‘FAX’, adVarWChar, 15);

Notice the two lines of code are
two separate operations. First the
PHONE is deleted and then the FAX is
added. There is no way of collect-
ing a set of changes to be applied in
a single operation. Anyone who
has used a little SQL DDL will be
familiar with this behaviour.

Adding An
AutoIncrement Column
Each of the Table.Columns.Append
operations performed so far
worked on columns which could

Col:=CreateCOMObject(Class_Column) as Column;
Col.Name:='CUSTNO';
Col.Type_:=adInteger;
Col.ParentCatalog:=Cat;
// this line will fail if ParentCatalog is not set
Col.Properties['Autoincrement'].Value:=True;
tbl.Columns.Append(Col, adInteger, 0);

procedure TForm1.btnCreateTableClick(Sender: TObject);
var
Cat: Catalog;
tbl: Table;

begin
Cat:=CreateCOMObject(Class_Catalog) as Catalog;
Cat.Set_ActiveConnection(ADOConnection2.ConnectionObject);
tbl:=CreateCOMObject(Class_Table) as Table;
tbl.Name:='Customers';
tbl.Columns.Append('CUSTID'  , adInteger, 0 );
tbl.Columns.Append('CUSTNAME', adVarWChar, 15);
tbl.Columns.Append('PHONE'   , adVarWChar, 15);
Cat.Tables.Append(tbl);  // create the table

end;



June 2000 The Delphi Magazine 27

be defined simply by the three
parameters passed to the Append
method. Not all columns can be so
easily defined. An AutoIncrement
field is one example, so we’ll look
at creating Column objects from
scratch. In the example shown in
Listing 8 a new auto increment
column called CUSTNO is added.

Notice the assignment of the
ParentCatalog property. This is
essential because this allows the
Column to know what additional
OLE DB Provider-specific proper-
ties it has (eg Autoincrement). Also
notice that the Appendmethod must
still take all three parameters even
though the first parameter is a
Column which contains the informa-
tion passed to the third parameter.
This is the nature of using an inter-
face. Unfortunately the Delphi
COM trick of passing EmptyParam for
parameters to be ignored does not
work in ADOX and so real, dupli-
cate, data must be passed instead.

Altering A Column
In SQL DDL there is no command to
allow you to alter an existing
column. Instead you have to drop
the old column and add it back
with the new definition. If the
column has data in, it will be
lost. To prevent this, a temporary
column holding the data can be
created for use whilst the original
column is dropped.

In ADOX the problems and the
solution are exactly the same. The
code in Listing 9 alters a column.
This code isn’t foolproof. If the
data needs to be truncated most
DBMSs will generate an exception
if the old data won’t fit into the new
column width. It also ignores any
other column attributes, such as
whether it accepts NULL, has CHECK
constraints or is a foreign key.

Indexes
Now that we know how to create a
table, creating an index follows the
same principles. Table 6 shows the
properties of an index. The exam-
ple in Listing 10 creates both single
field  and composite indexes.

Keys
Keys allow us to define and interro-
gate referential integrity. ADOX

supports three key types (identi-
fied by the Typeproperty): primary,
foreign and unique. Table 7 shows
the Keys collection properties. The
Type property is a KeyTypeENum and
is one of the constants in Table 8.

So, to define a primary key for
the Customers table consisting of
just the CUSTNO field you would use
the following code:

Cat.Tables[
‘Customers’].Keys.Append(
‘PKEY’, adKeyPrimary,
‘CUSTNO’, ‘’, ‘’);

The fourth and fifth parameters
are used only by foreign keys.

The following code specifies
that the CUSTNO column in the
Orders table is a foreign key

procedure TForm1.btnAlterColClick(Sender: TObject);
begin
AlterColumn(ADOConnection2, 'Customers', 'CUSTNAME', 30);
end;
procedure TForm1.AlterColumn(Conn: TADOConnection;
strTable: string; strColumn: string; intSize: integer);

var
Cat: Catalog;
tbl: Table;
Col: Column;
DataType: DataTypeENum;

begin
Cat:=CreateCOMObject(Class_Catalog) as Catalog;
Cat.Set_ActiveConnection(Conn.ConnectionObject);
tbl:=Cat.Tables[strTable];
Col:=tbl.Columns.Item[strColumn];
DataType:=Col.Type_;
tbl.Columns.Append('TMP', DataType, Col.DefinedSize);
Conn.Execute('UPDATE '+strTable+' SET TMP='+strColumn);
tbl.Columns.Delete(strColumn);
tbl.Columns.Append(strColumn, DataType, intSize);
Conn.Execute('UPDATE '+strTable+' SET '+strColumn+'=TMP');
tbl.Columns.Delete('TMP');

end;

➤ Above: Listing 9 ➤ Below: Listing 10

Cat.Tables['Customers'].Indexes.Append('CUSTNAMEINDEX1', 'CUSTNAME');
Cat.Tables['Customers'].Indexes.Append(
'CUSTNAMEINDEX2', VarArrayOf(['CUSTNAME', 'PHONE']));

Clustered Is the index a SQL Server clustered index ?

Columns Collection of Column objects

IndexNulls Indicates what happens to entries that contain nulls

Name Name

PrimaryKey Specifies whether the index is the primary key of the table

Properties Collection of Property objects

Unique Indicates whether the keys must be unique

Columns Collection of Column objects

DeleteRule Specifies what happens when a primary key is deleted

Name Name

RelatedTable The name of the foreign table

Type The type of the key

UpdateRule Specifies what happens when a primary key is updated

Constant Value Description

adKeyPrimary 1 The key is a primary key (and unique)

adKeyForeign 2 The key is a foreign key (and not unique)

adKeyUnique 3 The key is unique

➤ Table 8

➤ Above: Table 6 ➤ Below: Table 7



28 The Delphi Magazine Issue 58

referencing the CUSTNO column of
the Customers table:

Cat.Tables[‘Orders’].Keys.Append(

‘FKEY’,adKeyForeign,‘CUSTNO’,

‘Customers’,‘CUSTNO’);

In this case the DeleteRule and
UpdateRule properties would have
their default values so deletions of
the parent record in Customers and
updates of the Customers.CUSTNO
field would fail while there are
records in Orders which reference
them. Both DeleteRule and
UpdateRule are RuleENumswhich can
be any of the values in Table 9.

Procedures
The Procedures object theoreti-
cally allows stored procedures to
be created, retrieved and dropped.
Unfortunately this is a weak area of

ADOX. The SQL Server and Oracle
OLE DB Providers cannot create or
delete stored procedures so the
only solution is to go back to SQL
CREATE PROCEDURE and DROP PROCE-
DURE (or whatever commands your
dialect uses). Alternatively you
could use SQL DMO (SQL Server
Distributed Management Objects)
to create, alter and drop SQL
Server stored procedures.

Unsupported Features
As I mentioned at the start, ADOX
is simply a specification, it is left to
the author of the OLE DB Provider
to decide whether a feature is actu-
ally implemented. Table 10 sum-
marises the features which are not
supported by the Jet, SQL Server
and Oracle OLE DB Providers. As
you can see from the table, Jet sup-
ports the majority of ADOX but
SQL Server and Oracle have very
large gaps in their support.

Security, Users And Groups
Of all of the areas of ADOX, secu-
rity has the poorest support. Jet is
the only provider which has sup-
port for Users and Groups and these
collections are available only in
Access 2000, not Access 97. Access
security has to be set up before
attempting to access the Users and
Groups collections (accessing
these collections for a database
which does not have security gen-
erates an error). Unfortunately set-
ting up Access security is a difficult
process for the uninitiated.

ADOX allows us to interrogate
the lists of users and groups and
add, update and delete from them.
The ConnectionString must be
modified before a secure database
can be opened, by setting the Jet
OLE DB:System database argument
(in the All page of the connection
string editor) to the filename of the
workgroup information file (the
.mdw file). The code in Listing 11
adds a new group.

In ADOX each User in the Users
collection can belong to a Group
and each Group in the Groups
collection can have many users.
Both User and Group objects have
extensive support to allow pro-
grammers to get and set any
security permissions on any
object using GetPermissions and
SetPermissions.

Conclusion
ADOX attempts to insulate the pro-
grammer from the different dia-
lects of SQL DDL and DCL by
offering a type library of interfaces
common to all DBMSs. Making use
of this type library in Delphi
is straightforward. Unfortunately
true portability of this part of the
application is still a little way away
yet because complete support for
ADOX is lacking in all but the Jet
OLE DB Provider.

Guy Smith-Ferrier is Technical
Director of Enterprise Logistics
Ltd. (www.EnterpriseL.com), a
training and development
company specialising in Delphi
which runs ADO courses. He can
be contacted at gsmithferrier@
EnterpriseL.com

Constant Value Description

adRINone 0 Deletes/updates are prevented

adRICascade 1 Deletes/updates are cascaded

adRISetNull 2 Deletes/updates set foreign key to NULL

adRISetDefault 3 Deletes/updates set foreign key to its default value

Feature Jet SQL Server Oracle

Catalog.Create Yes No No

Tables Yes Properties are read only Properties are read only,
Append and Delete are not
supported

Views Yes Not supported Append, Delete and Command
not supported

Procedures N/A Append, Delete and
Command not supported

Append, Delete and Command
not supported

Keys Yes Append and Delete not
supported

Append and Delete not
supported

Indexes Yes Append and Delete not
supported

Users Yes Not supported Not supported

Groups Yes Not supported Not supported

➤ Above: Table 9 ➤ Below: Table 10

procedure TForm1.btnAddGroupsClick(Sender: TObject);
var
Cat: Catalog;
grp: Group;

begin
Cat := CreateCOMObject(Class_Catalog) as Catalog;
Cat.Set_ActiveConnection(ADOConnection2.ConnectionObject);
grp:=CreateCOMObject(Class_Group) as Group;
grp.Name:='Technical';
Cat.Groups.Append(grp);

end;

➤ Listing 11


	ADOX Type Library
	ADOX Object Model
	Catalogs
	Collections
	Tables
	Columns
	Creating A Table
	Adding An AutoIncrement Column
	Altering A Column
	Indexes
	Keys
	Procedures
	Unsupported Features
	Security, Users And Groups
	Conclusion

